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Abstract. The QCD corrections to the top-quark pair production via both polarized and unpolarized gluon
fusion in pp collisions are calculated in the minimal supersymmetric model (MSSM). We find that the
MSSM QCD corrections can reach 4% and may be observable in future precise experiments. Furthermore,
we studied CP violation in the MSSM. Our results show that the CP-violating parameter is sensitive to
the masses of SUSY particles (it becomes zero when the c.m. energy is less than twice the masses of both
the gluino and the stop quarks) and may reach 10−3.

1 Introduction

The minimal supersymmetric model (MSSM) [1] is one
of the most interesting extensions of the standard model
(SM). Therefore, testing the MSSM has attracted much
interest. As is well known, the MSSM predicts supersym-
metric (SUSY) partners to all particles expected by the
SM, and searching for their existence is very important.

Since the top quark was already found experimentally
by the CDF and D0 Collaborations at Fermilab [2], we
believe that more experimental events including the top
quark will be collected in future experiments. That gives
us a good chance to study the physics in top-quark pair
production from pp or pp̄ collisions with more precise ex-
perimental results. Because of the heavy mass of the top
quark, this process provides a test of the SM and possible
signals of new physics at high energy.

The dominant subprocesses of top-quark pair produc-
tion in pp or pp̄ colliders are quark–antiquark annihilation
and gluon–gluon fusion. The lowest order of those two
subprocesses has been studied in [3]. There it was found
that the former subprocess (qq̄ annihilation) is more dom-
inant in pp̄ collisions when the c.m. energy (

√
s) is near

the threshold value 2mt, whereas the subprocess via gg
fusion will become increasingly important with increasing
c.m. energy, and can become the most dominant process
when the c.m. energy is much larger than 2mt.

In [4], the QCD corrections to top-quark pair produc-
tion in pp̄ collisions have been studied in the frame of the
SM. It may seem natural that the QCD corrections of
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those processes in the frame of the MSSM are important
for distinguishing those two models. Recently, the SUSY
QCD corrections to top-pair production via qq̄ annihila-
tion were presented [5]. The SUSY QCD corrections via
unpolarized gluon–gluon fusion were given by Li et al. [6].

It is obvious that the correction from the SUSY QCD is
related to the masses of the top quark and of SUSY parti-
cles. Assuming the SUSY breaking scale to be at about
1 TeV, the masses of SUSY particles would be smaller
than 1 TeV. Therefore we can hope that corrections from
SUSY particles are significant, since the heavy mass of
the top quark (mt = 175.6 ± 5.5 GeV (world average))
may be comparable to some of the light SUSY particle
masses. Therefore the SUSY QCD correction would in-
directly give us some significant information about the
existence of SUSY particles.

Recently, the spin structure of the nucleon has been
intensively studied by polarized deep-inelastic-scattering
experiments at CERN and SLAC. Knowledge about this
allows us to find a clear signal beyond the SM, if we collect
enough events in the process of top-quark pair production
from polarized pp or pp̄ collisions. In the SM QCD there is
no CP-violation mechanism, whereas in the SUSY QCD
the situation may be different. If we introduce a phase
angle of quark SUSY partners, we can get CP violation
in the MSSM QCD [7]. Once we get enough statistics of
top-quark pairs from pp or pp̄ colliders at higher energy, it
will be possible to test CP violation. On the other hand,
the spin-dependent parton distributions can be obtained
from their polarized structure function data given in [8,
10,11]. There it is found that the shape of polarized gluon
and quark distributions in the nucleon depends on its po-
larization. Therefore the CP-violation effects through the
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process of top-quark pair production via gg fusion may be
observed in polarized pp or pp̄ collisions.

In this work we concentrate on the SUSY QCD correc-
tions to the process pp → gg → tt̄X both in polarized and
unpolarized colliding beams. In Sect. 2 we give the tree-
level contribution to the subprocess gg → tt̄. In Sect. 3 we
give the analytical expressions of the SUSY QCD correc-
tions to gg → tt̄. In Sect. 4 the numerical results of the
subprocess gg → tt̄ and the process pp → gg → tt̄X are
presented. The conclusion is given in Sect. 5, and some
details of the expressions are listed in the Appendix.

2 The tree-level subprocess

The graphical representation of the process g(λ1, k1)
g(λ2, k2) → t(p1)t̄(p2) is shown in Fig. 1a. The Mandel-
stam variables are defined as usual:

ŝ = (p1 + p2)2 = (k1 + k2)2, (2.1)

t̂ = (p1 − k1)2 = (k2 − p2)2, (2.2)

û = (p1 − k2)2 = (k1 − p2)2, (2.3)

so ŝ + t̂ + û = 2m2
t . The amplitude of tree-level diagrams

with polarized gluons can be written as in [3] (a, b are
color indices of external gluons, i, j are colors of external
top quarks, and T a = λa/2 are the Gell-Mann matrices):

M
(l)
0 = g2

sεµ,a(λ1, k1)εν,b(λ2, k2)ūi(p1)Γ (l)vj(p2),
(l = s, t, u),

(2.4)

with

Γ (s) =
T c

ijfabc

s
[(/k1 − /k2)gµν + (2k2 + k1)µγν

−(2k1 + k2)νγµ], (2.5)

Γ (t) =
−iT a

imT b
mj

t − m2
t

γµ(/k2 − /p2 + mt)γν , (2.6)

Γ (u) =
−iT b

imT a
mj

u − m2
t

γν(/k1 − /p2 + mt)γµ. (2.7)

We chose a form in which only physical polarizations of
gluons remained:

εµ∗(λ1, ki)εν(λ2, ki) =
δλ1,λ2

2

(
−gµν +

nµkν
i + nνkµ

i

n · ki

− n2kµ
i kν

i

(n · ki)2
+ iλ1ε

σµρν kiσnρ

n · ki

)
, (2.8)

where n = k1 + k2 and λ1,2 = ±1. From that we can get
the cross section at the tree level with both polarized and
unpolarized gluons.

3 SUSY QCD corrections (non-SM) to the
subprocess gg → tt̄

3.1 Relevant Lagrangian in the MSSM

The difference between the MSSM QCD and the SM QCD
corrections stems from the interactions of SUSY particles.
Thus we can divide SUSY QCD corrections into a stan-
dard and a non-standard part. The Lagrangian density of
the non-SM part of the SUSY QCD interaction is written
as:

L = L1 + L2 + L3 + L4, (3.1.1)

where

L1 = −igsA
µ
aT a

jk(q̃j
L∂µq̃k

L − q̃k
L∂µq̃j

L) + (L → R), (3.1.2)

L2 = −√
2ĝsT

a
jk(¯̃gaPLqk q̃j∗

L + q̃jPRg̃aq̃k
L

−¯̃gaPRqk q̃j∗
R − q̄jPLg̃aq̃k

R),
(3.1.3)

L3 = i
2gsfabc

¯̃gaγµg̃bAc
µ, (3.1.4)

L4 = 1
6g2

sAa
µAµ

a(q̃∗
Lq̃L + q̃∗

Rq̃R)
+ 1

2g2
sdabcA

a
µAµb(q̃i∗

L T c
ij q̃

j
L + q̃i∗

R T c
ij q̃

j
R).

(3.1.5)

q stands for quark, q̃ for the corresponding squark, g̃ for
gluino, and PL and PR for left and right helicity projec-
tions, respectively. The mixing between the left- and right-
handed stop quarks t̃L and t̃R can be very large due to the
large mass of the top quark, and the lightest scalar top-
quark mass eigenstate t̃1 can be much lighter than the
top quark and all the scalar partners of the light quarks.
Therefore the left–right mixing for the SUSY partners of
the top quark plays an important role. Here we only con-
sidered the SUSY QCD effect from the stop quark, be-
cause we assume that other scalar SUSY quarks are much
heavier than the stop quark and hence decoupled. Fur-
thermore, we introduce the phase angle φA in the stop
mixing matrix. Defining θ as mixing angle of stop quark,
we have

t̃L = e
−iφA

2 (t̃1 cos θ + t̃2 sin θ), (3.1.6)

t̃R = e
iφA
2 (−t̃1 sin θ + t̃2 cos θ), (3.1.7)

where we suppose mt̃1
≤ mt̃2

.

3.2 Analytical results of the MSSM QCD corrections

The one-loop SUSY QCD correction diagrams are shown
in Fig. 1b. In the following we only present the ampli-
tude expressions of the s-channel and the t-channel. The
amplitude of the u-channel can be obtained from the t-
channel expressions by the following variable exchanges:
t ↔ u, k1 ↔ k2, εa

µ(k1) ↔ εb
ν(k2) and T a ↔ T b. The one-

loop diagrams can be divided into three groups: the self-
energy diagrams of the gluon and the top quark shown in
Fig. 1b.1; gtt̄ and ggg vertex correction diagrams shown in
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Fig. 1. Feynman diagrams at the tree level and one-loop level
in the SUSY QCD for the gg → tt̄ subprocess. Figure 1(a)
Tree-level diagrams. Figure 1(b.1) Self-energy diagrams (for
top quark and gluon). Figure 1(b.2) Vertex diagrams (includ-
ing tri-gluon and gluon–top–top interactions). Figure 1(b.3)
Box diagrams (only t-channel). Dashed lines represent t̃1, t̃2
in Fig. 1(b)

Fig. 1b.2; and box diagrams shown in Fig. 1b.3. The ultra-
violet divergence is controlled by dimensional regulariza-
tion (n = 4− ε). The strong coupling-constants are renor-
malized by using the modified minimal subtraction (MS)
scheme at charge-renormalization scale µR. This scheme
violates SUSY explicitly, and the qq̃g̃ Yukawa coupling ĝs,
which should be the same with the qqg gauge coupling
gs in supersymmetry, takes a finite shift at one-loop or-

der. Therefore we take this shift to be between ĝs and
gs as shown in (3.2.1) into account in our calculation, so
the physical amplitudes are independent of the renormal-
ization scheme, and we subtract the contribution of the
false, non-supersymmetric degrees of freedom (also called
ε scalars) [12]:

ĝs = gs

[
1 +

αs

4π
(
2
3
CA − 1

2
CF)

]
, (3.2.1)
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where CA = 3 and CF = 4/3 are the Casimir invariants of
the SU(3) gauge group. The heavy particles (top quarks,
gluino, stop quarks, etc.) are removed from the µR evo-
lution of αs(µ2

R); then they are decoupled smoothly when
momenta are smaller than their masses [13]. We define
masses of heavy particles as pole masses.

The renormalized amplitude corresponding to all
SUSY QCD one-loop corrections (as shown in Fig. 1) can
be split into the following components:

δM = δMs + δMv + δMbox + δMd, (3.2.2)

where δMs, δMv, δMbox and δMd are the one-loop am-
plitudes corresponding to the self-energy, vertex, and box
correction diagrams and the decoupling part, respectively.
The δMd stems from the decoupling of the heavy flavors
from the running strong coupling, and is given explicately
by (see also [12,13]):

δMd = M0(
αs(µ)

π )[ 1
24 log( µ2

R
m2

t̃1

) + 1
24 log( µ2

R
m2

t̃2

)

+ 1
6 log( µ2

R
m2

t
) + 1

2 log( µ2
R

m2
g̃

)].
(3.2.3)

3.3 Self-energy corrections to the amplitude

The amplitude of self-energy diagrams δMs (Fig. 1b.1)
can be decomposed into δMg

s (gluon self-energy) and δMq
s

(top-quark self-energy), i.e.

δMs = δMg
s + δMq

s

= δM
g(s)
s + δM

g(t)
s +δM

g(u)
s + δM

q(t)
s + δM

q(u)
s .

(3.3.1)
The amplitudes δM

g(s)
s , δM

g(t)
s and δM

g(u)
s are for the s-,

t- and u-channel, respectively. They can be expressed as:

δM
g(s)
s = 1

2M
(s)
0 [Π(k2

1) + Π(k2
2) + 2Π(s)], (3.3.2)

δM
g(t)
s = 1

2M
(t)
0 [Π(k2

1) + Π(k2
2)], (3.3.3)

δM
g(u)
s = 1

2M
(u)
0 [Π(k2

1) + Π(k2
2)], (3.3.4)

where M0 is the tree-level amplitude defined in (2.4).

Π(k2) = −αs

4π (TF(B̄0 + 4B̄1 + 4B̄21)[k, mt̃1
, mt̃1

]
+TF(B̄0 + 4B̄1 + 4B̄21)[k, mt̃2

, mt̃2
]

−4CA(B̄1 + B̄21)[k, mg̃, mg̃] − 1
3CA).

(3.3.5)
where CF = 4/3, TF = 1/2 and CA = 3 are invariants
in the SU(3) color group, and Bi and Bij are Passarino–
Veltman two-point functions [14,15]. The definitions of
B̄0, B̄1 and B̄21 are listed in Appendix A. The amplitude
δM

q(t)
s is written as:

δM
q(t)
s =

−ig2
sT a

ikT b
lj

(t−m2
t )2 εµ,a(k1)εν,b(k2)ūi(p1)γµ

(/k2 − /p2 + mt)
[
Σ̂kl(k2 − p2)

]
×(/k2 − /p2 + mt)γνvj(p2).

(3.3.6)

Here we define

Σ̂kl(p) = CF(HL/pPL + HR/pPR − HS
LPL − HS

RPR)δkl,

(3.3.7)
with

HL = ĝ2
s

8π2 x1x3B1[p, mg̃, mt̃1
]

+(mt̃1
→ mt̃2

, xi → yi)
+ 1

2 (δZL + δZ†
L),

(3.3.8)

HR = ĝ2
s

8π2 x2x4B1[p, mg̃, mt̃1
]

+(mt̃1
→ mt̃2

, xi → yi)
+ 1

2 (δZR + δZ†
R),

(3.3.9)

HS
L = ĝ2

s

8π2 x2x3mg̃B0[p, mg̃, mt̃1
]

+(mt̃1
→ mt̃2

, xi → yi)
+ 1

2mt(δZL + δZ†
R) + δmt,

(3.3.10)

HS
R = ĝ2

s

8π2 x1x4mg̃B0[p, mg̃, mt̃1
]

+(mt̃1
→ mt̃2

, xi → yi)
+ 1

2mt(δZR + δZ†
L) + δmt,

(3.3.11)

where we abbreviate φ = φA, x1 = cos θe−iφ, x2 = sin θeiφ,
x3 = cos θeiφ, x4 = sin θe−iφ, y1 = sin θe−iφ,
y2 = − cos θeiφ, y3 = sin θeiφ, y4 = − cos θe−iφ, and θ is
the mixing angle of stop quarks (see (3.1.6) and (3.1.7)).

The explicit expressions of the top-quark wave-function
renormalization constants have the following forms:

δZL = − ĝ2
s

8π2 (x1x3Re[B1] − mg̃

mt
(x1x4 − x2x3)Re[B0]

+ m2
t (x1x3 + x2x4)Re[B

′
1]

− mtmg̃(x2x3 + x1x4)Re[B
′
0])[p, mg̃, mt̃1

]|p2=m2
t
,

(3.3.12)
δZR = − ĝ2

s

8π2 (x2x4Re[B1] + m2
t (x1x3 + x2x4)Re[B

′
1]

− mtmg̃(x2x3 + x1x4)Re[B
′
0])[p, mg̃, mt̃1

]|p2=m2
t
,

(3.3.13)
δmt = ĝ2

s

16π2 ((x1x3 + x2x4)mtRe[B1]
− (x2x3 + x1x4)mg̃Re[B0])[p, mg̃, mt̃1

]|p2=m2
t
.

(3.3.14)
We use the following abbreviations: B

′
i,ij [p, m1, m2] =

∂Bi,ij [p, m1, m2]/∂p2.

3.4 Vertex-corrections to the amplitude

The amplitudes for vertex diagrams can be expressed as:

δM
(l)
v = gsε

µ,a(k1)εν,b(k2)ūi(p1)Λ(l)vj(p2), (l = s, t, u),
(3.4.1)

where

Λ(s) = −T c
ij

s

[
Λ

(3g)
µνρ (k1, k2)

]
γρ

− fabc

s [(k1 − k2)ρgµν + (2k2 + k1)µgνρ

−(2k1 + k2)νgµρ]
[
Λc

ρ,(ij)(p1, p2)
] (3.4.2)
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and

Λ(t) = −i
t−m2

t

{
T b

mj

[
Λa

µ,(im)(p1, k1 − p1)
]
(/k2 − /p2 + mt)γν

+T a
imγµ(/k2 − /p2 + mt)

[
Λb

ν,(mj)(k2 − p2, p2)
]}

.

(3.4.3)
The functions Λ

(3g)
µνρ and Λa

µ,(ij) are listed in Appendix B.

3.5 Box corrections to the amplitude

The box-diagram corrections in the t-channel (Fig. 1b.3)
are given as follows:

δM
(t)
box = 2g2

sεµ,a(k1)εν,b(k2)ūi(p1)((T cT aT bT c)ijF
(t1)
µν

−ifbcd(T cT aT d)ijF
(t2)
µν

−facmfbmd(T cT d)ijF
(t3)
µν

−[T c(T aT b + T bT a)T c]ijF
(t4)
µν )vj(p2),

(3.5.1)
where fabc is defined as [T a, T b] = ifabcT

c. The form fac-
tors F

(ti)
µν (i = 1–4) correspond to the kernel of the four

Feynman diagrams in Fig. 1b.3 respectively, and are given
explicitly in Appendix C.

3.6 Total cross section

Collecting all terms in (3.2.2), we can get the total cross
section:

σ(λ1, λ2) = σ0(λ1, λ2)(1 + δσ(λ1, λ2))

= 1
16πs2

∫ t+

t− dt
∑

spins[|M0|2 + 2Re(M†
0δM)],

(3.6.1)
where t± = (m2

t − (1/2)s) ± (1/2)sβt, βt =
√

1 − 4m2
t /s,

and the spin sum is performed only over the final top-
quark pair when we considered polarized gluons.

4 Numerical results

We write σ̂0 for the Born cross section and σ̂ for the
cross section including one-loop SUSY QCD corrections
of subprocess gg → tt̄, and define its relative correction
as δ̂ = (σ̂ − σ̂0)/σ̂0. For polarized gluon fusions, σ̂++,
σ̂−− and σ̂+− are the cross sections with positive, neg-
ative and mixed polarization of the gluons, respectively.
In order to inspect the CP-violating effects we introduce
the CP-violation parameter for the subprocess defined by
ξ̂CP = (σ̂++ − σ̂−−)/(σ̂++ + σ̂−−). The possible SUSY
QCD effects in gg → tt̄ should be observed in pp colliders.
By analogy we can also define the relative correction and
the CP-violating parameter for the process pp → gg → tt̄x
as δ = (σ −σ0)/σ0 and ξCP = (σ++ −σ−−)/(σ++ +σ−−),
respectively. The SUSY QCD contribution to the process
p(P1, x)p(P2, y) → gg → tt̄X (x and y are polarizations of
protons) can be obtained by convoluting the subprocess
with gluon distribution functions;

σ(s) =
∫

dx1dx2G(x1, Q)G(x2, Q)σ̂(ŝ, αs(µ)), (4.1)

with k1 = x1P1, k2 = x2P2 and τ = x1x2 = ŝ/s. G(xi, Q)
(i = 1, 2) are gluon distribution functions of protons. We
take Q = µR = 2mt.

In order to get results of top-quark pair production
from polarized pp collisions, we need to consider the po-
larized gluon distributions in protons. The cross sections
of polarized pp → gg → tt̄X can be written as

σ(x, y) = Σλ1,λ2=±
∫

dx1dx2G
xλ1(x1, Q)

×Gyλ2(x2, Q)σ̂λ1,λ2(ŝ, αs(µ)),
(4.2)

where x and y are the polarizations of incoming protons,
and λ1 and λ2 are the polarizations of gluons inside pro-
tons. Gxλ1(x, Q), Gyλ2(x, Q) = G±(x, Q) for equal (+)
and opposite (−) polarizations, where G+(x, Q) and
G−(x, Q) are polarized gluon distribution functions in the
proton.

We used the unpolarized proton structure functions of
Glück et al. [9] in our numerical calculations. For the po-
larized proton structure functions, we use the evolution
equations of Glück et al. [10] with input parameters from
the paper of Stratmann et al. [11] (next-to-leading order).
Since the structure functions belong to the least certain
inputs of our calculation, we checked the result against an-
other set, i.e. the polarized structure functions G±(x, Q)
of Brodsky et al. [8] (using leading order only). This tests
the stability of our results against the particular form of
the input structure functions. The two different sets of in-
put are compared in Fig. 2, which gives the relative SUSY
QCD correction (δ) and ξCP versus c.m. energy

√
s for the

process pp → gg → tt̄X. Though the SUSY QCD correc-
tions from the two sets of structure functions are not very
different for δ, there is some noticeable change for ξCP.
Because ξCP depends strongly on the c.m. energy of the
subprocess gg → tt̄ (shown in Fig. 3b), a small modifica-
tion of the structure functions may lead to a large change
of ξCP. Thus we can infer that the NLO-QCD calcula-
tion is required and the precise numerical prediction does
depend on the reliability of the structure functions.

The SUSY QCD relative corrections are about 2–4%
and decrease with increasing c.m. energy (see Fig. 2).
These correction effects are within reach of future pre-
cision experiments and provide a possible discrimination
of the SM and the MSSM effects. From Fig. 2c we can see
that the CP-violation parameter ξCP can be 10−3. There-
fore, CP violation in this process stemming from the SUSY
QCD can in principle be tested in future precision experi-
ments. That would help us to learn more about the sources
of CP violation.

In order to explore the effects of the SUSY QCD cor-
rection for future arrangements of optimal experimental
conditions, we also investigate the subprocess gg → tt̄.

The relative SUSY QCD correction and CP-violating
parameter versus c.m. energy (

√
ŝ) for different polariza-

tion gluons are plotted in Fig. 3a–c with mg̃ = 200 GeV,
mt̃1

= 250 GeV, mt̃2
= 450 GeV, and θ = φ = 45◦. In

Fig. 3a, δ̂++ and δ̂−− are shown by a solid line and a
dashed line, respectively. ξ̂CP as a function of c.m. energy
is depicted in Fig. 3b, and δ̂+− as a function of

√
ŝ is
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Fig. 2. a Relative corrections to polarized and unpolarized
cross sections of the tt̄ production process in pp colliders as a
function of

√
s with input structure functions of Brodsky et

al. [8] (LO). b Relative corrections to polarized and unpolar-
ized cross sections of the tt̄ production process in pp colliders
as a function of

√
s with input structure functions of Glück

et al. [9–11] (NLO). In both a and b, the solid line is for the
MSSM QCD correction with unpolarized protons, the dashed
line is for the MSSM QCD correction with proton(+) pro-
ton(+) polarization, the dotted line is for the MSSM QCD
correction with proton(−) proton(−) polarization, and the
dot-dashed line is for the MSSM QCD correction with pro-
ton(+) proton(−) polarization. c The CP-violating parame-
ter ξCP as a function of

√
s. The solid line is for input struc-

ture functions of Glück et al. (NLO), the dashed line is for in-
put structure functions of Brodsky et al. (LO) mg̃ = 200GeV,
mt̃1

= 250GeV, mt̃2
= 450GeV and θ = φ = 45◦

plotted in Fig. 3c. Each curve in Fig. 3a has an obvious
peak near the position of the threshold of top pair produc-
tion. That large enhancement is the combined effect of the
threshold, when

√
ŝ is just larger than 2mt = 350 GeV,

and the resonance when
√

ŝ ∼ 2mg̃ = 400 GeV. The
small spikes around the position of

√
ŝ = 900 GeV, where√

ŝ ∼ 2mt̃2
= 900 GeV, also shows the resonance effect.

Although Fig. 3a shows that δ̂++ and δ̂−− approach equal
values when the c.m. energy is far beyond its threshold
value 2mt, the quantitative difference between δ̂+− and
δ̂++ still exists in the whole energy range plotted in these
figures. Figure 3b also shows that ξ̂CP will be zero if the
c.m. energy is below the threshold of SUSY particles in
the loop (i.e.

√
ŝ ≤ 2mg̃ = 400 GeV in Fig. 3b. This is

reasonable because only beyond this point we can have

absorptive terms which give contributions to ξ̂CP. ξ̂CP has
an obvious resonance effect in the regions around

√
ŝ ∼

2mg̃ = 400 GeV and
√

ŝ ∼ 2mt̃i
(i = 1, 2) = 500 GeV,

900 GeV. We also find that the two stop quarks give op-
posite contributions to ξ̂CP, and when their masses are
degenerate ξ̂CP will vanish. When the c.m. energy

√
ŝ is

larger than 1 TeV, ξ̂CP will be near zero, because the con-
tributions from the two stop quarks will cancel each other.
Therefore a quantitative strong change of ξ̂CP as a func-
tion of c.m. energy can be an indication for the signals of
stop quarks and gluino.

σ̂(±,±) and ξ̂CP as functions of mg̃ are shown in
Fig. 4a and b, respectively. In Fig. 4 we take

√
ŝ =

500 GeV, mt̃1
= 100 GeV, mt̃2

= 450 GeV, and θ = φ =
45◦. We can see from Fig. 4b that ξ̂CP changes its sign
when mg̃ is near mt = 175 GeV. The curves in Fig. 4a, b
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Fig. 3. a Relative corrections to the cross section of the
tt̄ production subprocess, δ̂±± as a function of

√
ŝ. The

solid line is for the MSSM QCD correction with gluon(+)
gluon(+) polarization and the dashed line is for the MSSM
QCD correction with gluon(−) gluon(−) polarization. b The
CP-violating parameter ξ̂CP of the subprocess as a function of√

ŝ. c Relative corrections to the cross section of the subpro-
cess δ̂+− as a function of

√
ŝ. mg̃ = 200GeV, mt̃1

= 250GeV,
mt̃2

= 450GeV and θ = φ = 45◦

again show the resonance effect when
√

ŝ ∼ 2mg̃ =
500 GeV. Note that for each line there is a steep change
of the value of σ̂(±,±) or ξ̂CP around the position of
mg̃ = 250 GeV.

Dependences of the relative correction δ̂±± and ξ̂CP for
the subprocess gg → tt̄ on mt̃1

are plotted in Fig. 5a, b.
δ̂±± and ξ̂CP as functions of mt̃2

are shown in Fig. 6a
and b, respectively. In all parts of Figs. 5 and 6, we take
the common parameter set with

√
ŝ = 500 GeV, mg̃ =

200 GeV and θ = φ = 45◦. In Fig. 5 we set mt̃2
= 450 GeV,

whereas mt̃1
= 100 GeV in Fig. 6. We find that ξ̂CP in fact

increases with mass splitting of stop quarks (i.e. mt̃2
−

mt̃1
), and when mt̃1

= mt̃2
, ξ̂CP is equal to zero. The res-

onance effect of stop quarks, when
√

ŝ ∼ 2mt̃i
(i = 1, 2),

is superimposed on the curves in Fig. 5a, b and Fig. 6a, b

around the positions of mt̃1
= 250 GeV in Fig. 5a, b and

mt̃2
= 250 GeV in Fig. 6a, b. Around those points the rel-

atively sharp changes of the values of ξ̂CP and the relative
corrections are shown in these figures.

Finally, the dependence of δ̂±± and ξ̂CP on the phase
φ is shown in Fig. 7a, b. In Fig. 7, we take

√
ŝ = 500 GeV,

mg̃ = 200 GeV, θ = 45◦ and mt̃1
= 150 GeV. We find

that ξ̂CP is directly proportional to sin (2φ) and reaches
its maximum value when φ = π/4.

5 Conclusion

In this work we have studied the one-loop supersymmet-
ric QCD corrections to the subprocess gg → tt̄ and the
process pp → gg → tt̄X. The calculations show that the
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Fig. 4. a Cross section of the tt̄ production subprocess via
gg fusion, σ̂±± as a function of mg̃. The solid line is for the
MSSM QCD correction with gluon(+) gluon(+) polarization
and the dashed line is for the MSSM QCD correction with
gluon(−) gluon(−) polarization. b The CP-violating parameter
ξ̂CP of the subprocess as a function of mg̃. mt̃1

= 100GeV,
mt̃2

= 450GeV,
√

ŝ = 500GeV and θ = φ = 45◦

SUSY QCD effects are significant. The absolute values of
the corrections are about 2–4%, so they may be observable
in future precision experiments. Furthermore, we find ξCP
depends strongly on the masses of SUSY particles and can
reach 10−3 when we take plausible SUSY parameters.

The results show that there is an obvious difference be-
tween the corrections for the protons polarized with par-
allel spin and those with anti-parallel spin. Hence there is
a possibility to study spin dependence in the frame of the
MSSM QCD.

Fig. 5. a Relative corrections to the cross section of the tt̄
production subprocess via gg fusion, δ̂±± as a function of mt̃1

.
The solid line is for the MSSM QCD correction with gluon(+)
gluon(+) polarization and the dashed line is for the MSSM
QCD correction with gluon(−) gluon(−) polarization. b The
CP-violating parameter ξ̂CP of the subprocess as a function
of mt̃1

. mg̃ = 200GeV, mt̃2
= 450GeV,

√
ŝ = 500GeV and

θ = φ = 45◦

We also presented and discussed the results of the sub-
process gg → tt̄. We find that, when the c.m. energy passes
through the value 2mg̃ or 2mt̃i

(i = 1, 2), the value of the
CP-violating parameter ξ̂CP changes considerably. If the
c.m. energy is less than both 2mg̃ and 2mt̃i

(i = 1, 2), ξ̂CP
will be zero. If in future experiments a sharp change in
ξ̂CP is found with

√
ŝ running from low c.m. energy to

high c.m. energy, it would be interpreted as a signal of
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Fig. 6. a Relative corrections to the cross section of the tt̄
production subprocess via gg fusion, δ̂±± as a function of mt̃2

.
The solid line is for the MSSM QCD correction with gluon(+)
gluon(+) polarization and the dashed line is for the MSSM
QCD correction with gluon(−) gluon(−) polarization. b The
CP-violating parameter ξ̂CP of the subprocess as a function of
mt̃2

. mg̃ = 200GeV, mt̃1
= 100GeV and

√
ŝ = 500GeV and

θ = φ = 45◦

SUSY particles. Furthermore, because the CP-violating
parameter ξ̂CP is sensitive to the mass of the gluino (as
shown in Fig. 4b) and the mass splitting of stop quarks
mt̃2

− mt̃1
(as shown in Figs. 5 and 6), we can also get in-

formation on SUSY particles from precise measurements
of ξ̂CP.

Fig. 7. a Relative corrections to the cross section of the tt̄
production subprocess via gg fusion, δ̂±± as a function of φ.
The solid line is for the MSSM QCD correction with gluon(+)
gluon(+) polarization and the dashed line is for the MSSM
QCD correction with gluon(−) gluon(−) polarization. b The
CP-violating parameter ξ̂CP of the subprocess as a function
of φ. mg̃ = 200GeV,mt̃1

= 150GeV, mt̃2
= 450GeV,

√
ŝ =

500GeV and θ = 45◦
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Appendix

A. Loop integrals

We adopt the definitions of two-, three- and four-point
one-loop Passarino–Veltman integral functions of [14,15].

1. The two-point integrals are:

{B0;Bµ;Bµν}(p, m1, m2) =
(2πµ)4−n

iπ2

∫
dnq

× {1; qµ; qµqν}
[q2 − m2

1][(q + p)2 − m2
2]

, (A.1)

The function Bµ is proportional to pµ:

Bµ(p, m1, m2) = pµB1(p, m1, m2). (A.2)

Similarly we define:

Bµν = pµpνB21 + gµνB22. (A.3)

We define B̄0 = B0 − ∆, B̄1 = B1 + (1/2)∆ and B̄21 =
B21 − (1/3)∆, with ∆ = 2/ε − γ + log(4π), ε = 4 − n. µ is
the scale parameter.

2. The three-point integrals are:

{C0;Cµ;Cµν ;Cµνρ}(p, k, m1, m2, m3) = − (2πµ)4−n

iπ2

×
∫

dnq
{1; qµ; qµqν ; qµqνqρ}

[q2 − m2
1][(q + p)2 − m2

2][(q + p + k)2 − m2
3]

.

(A.4)

We define form factors as follows:

Cµ = pµC11 + kµC12,

Cµν = pµpνC21 + kµkνC22 + (pµkν + kµpµ)C23

+gµνC24,

Cµνρ = pµpνpρC31 + kµkνkρC32

+(kµpνpρ + pµkνpρ + pµpνkρ)C33

+(kµkνpρ + pµkνkρ + kµpνkρ)C34

× + (pµgνρ + pνgµρ + pρgµν)C35

+(kµgνρ + kνgµρ + kρgµν)C36. (A.5)

3. The four-point integrals are:

{D0;Dµ;Dµν ;Dµνρ;Dµνρα}(p, k, l, m1, m2, m3, m4) =

(2πµ)4−n

iπ2

∫
dnq{1; qµ; qµqν ; qµqνqρ; qµqνqρqα}

× {
[q2 − m2

1][(q + p)2 − m2
2]

× [(q + p + k)2 − m2
3][(q + p + k + l)2 − m2

4]
}

.(A.6)

Again we define form factors of D functions:

Dµ = pµD11 + kµD12 + lµD13,

Dµν = pµpνD21 + kµkνD22 + lµlνD23 + {pk}µνD24

+{pl}µνD25 + {kl}µνD26 + gµνD27,

Dµνρ = pµpnupρD31 + kµknukρD32 + lµlnulρD33

+{kpp}µνρD34 + {lpp}µνρD35 + {pkk}µνρD36

+{pll}µνρD37 + {lkk}µνρD38 + {kll}µνρD39

+{pkl}µνρD310 + {pg}µνρD311 + {kg}µνρD312

+{lg}µνρD313, (A.7)

where
{pk}µν = pµkν + kµpν ,

{pkl}µνρ = pµkν lρ + lµpνkρ + kµlνpρ,

{pg}µνρ = pµgνρ + pνgµρ + pρgµν . (A.8)

The numerical calculation of the vector and tensor loop
integral functions can be traced back to the four scalar
loop integrals A0, B0, C0 and D0 in [14,15] and the refer-
ences therein.

B. Vertex corrections

The 3-gluon-vertex can be written as (a, b and c are the
color indices of the external gluons):

Λ
(3g)
µνρ (k1, k2) = ig3

s

16π2

{
Tr(T bT cT a)

[
Λ

(1)
µνρ(k1, k2)

]
+if cmnfanlf blm

[
Λ

(2)
µνρ(k1, k2)

]}
;

(B.1)
the vertex functions Λ

(1)
µνρ, Λ

(2)
µνρ are expressed as follows:

Λ
(a)
µνρ(k1, k2) = f

(a)
1 gµρk1ν + f

(a)
2 gµνk1ρ

+f
(a)
3 gνρk2µ + f

(a)
4 gµνk2ρ

+f
(a)
5 k1νk1ρk2µ + f

(a)
6 k1νk2ρk2µ

+(mt̃1
→ mt̃2

, xi → yi),

(B.2)

where a = 1, 2, and the f
(1)
i , f

(2)
i are given in terms of

the Passarino–Veltman functions with internal stop lines
C

(1)
ij (= Cij [−k1,−k2, mt̃1

, mt̃1
, mt̃1

]) and internal gluino

lines C
(2)
ij (= Cij [−k1,−k2, mg̃, mg̃, mg̃]). For simplicity,

we abbreviate the definite part of C integral functions (us-
ing the definitions of [14,15]) as follows: C̄

(a)
24 = C

(a)
24 − 1

4∆,
C̄

(a)
35 = C

(a)
35 + 1

6∆, C̄
(a)
36 = C

(a)
35 + 1

12∆ (a = 1, 2):

f
(1)
1 = −8C̄

(1)
24 − 8C̄

(1)
35 ,

f
(1)
2 = −4C̄

(1)
24 − 8C̄

(1)
35 ,

f
(1)
3 = −8C̄

(1)
36 , (B.3)

f
(1)
4 = −4C̄

(1)
24 − 8C̄

(1)
36 ,

f
(1)
5 = 4C

(1)
12 + 12C

(1)
23 + 8C

(1)
33 ,

f
(1)
6 = 4C

(1)
12 + 8C

(1)
22 + 4C

(1)
23 + 8C

(1)
34 ,

and

f
(2)
1 = −8m2

g̃C
(2)
0 − 4m2

g̃C
(2)
11 − 16C̄

(2)
24

+12εC
(2)
24 − 8C̄

(2)
35 + 6εC

(2)
35

+8k1 · k2C
(2)
12 + 16k1 · k2C

(2)
23 + 8k1 · k2C

(2)
33 ,

f
(2)
2 = −4m2

g̃C
(2)
11 − 8C̄

(2)
35 + 6εC

(2)
35

+8C
(2)
23 k1 · k2 + 8C

(2)
33 k1 · k2,
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f
(2)
3 = 4m2

g̃C
(2)
0 − 4m2

g̃C
(2)
12 + 8C̄

(2)
24

−6εC
(2)
24 − 8C̄

(2)
36 + 6εC

(2)
36

+8k1 · k2C
(2)
22 + 8k1 · k2C

(2)
34 ,

(B.4)

f
(2)
4 = −4m2

g̃C
(2)
0 − 4m2

g̃C
(2)
12 − 8C̄

(2)
24

+6εC
(2)
24 − 8C̄

(2)
36 + 6εC

(2)
36

+8k1 · k2C
(2)
12 + 8k1 · k2C

(2)
22 + 8k1 · k2C

(2)
23

+8k1 · k2C
(2)
34 ,

f
(2)
5 = −8C

(2)
12 − 24C

(2)
23 − 16C

(2)
33 ,

f
(2)
6 = −8C

(2)
12 − 16C

(2)
22 − 8C

(2)
23 − 16C

(2)
34 .

Similarly, the gtt vertex functions are composed of left-
handed and right-handed contributions plus a countert-
erm (we define a as the color index of the external gluon
and i, j as colors of external top quarks):

Λa
µ,(ij)(p1, p2) = − gsĝ2

s

16π2 T a
ij{(2CF − CA)(Λ(1L)

µ (p1, p2)PL

+Λ
(1R)
µ (p1, p2)PR)

+CA(Λ(2L)
µ (p1, p2)PL

+Λ
(2R)
µ (p1, p2)PR)}

+(mt̃1
→ mt̃2

, xi → yi) + Λ
(CT)
µ .

(B.5)
The expressions for Λ

(n)
µ , n = 1L, 1R, 2L, 2R are given as:

Λ
(n)
µ (p1, p2) = h

(n)
1 γµ + h

(n)
2 p1µ + h

(n)
3 p2µ + h

(n)
4 /p1p1µ

+h
(n)
5 /p1p2µ + h

(n)
6 /p2p1µ

+h
(n)
7 /p2p2µ + h

(n)
8 γµ/p1

+h
(n)
9 γµ/p2 + +h

(n)
10 γµ/p1/p2.

(B.6)
We define

C
(3)
0 , C

(3)
ij = C0, Cij [−p1,−p2, mt̃1

, mg̃, mt̃1
]

and

C
(4)
0 , C

(4)
ij = C0, Cij [−p1,−p2, mg̃, mt̃1

, mg̃].

Then we arrive at h
(n)
i as follows (i = 1, 2, · · · , 10):

h
(1L)
1 = −2x2x4C

(3)
24 ,

h
(1L)
2 = x2x3mg̃(C

(3)
0 + 2C

(3)
11 ),

h
(1L)
3 = x2x3mg̃(C

(3)
0 + 2C

(3)
12 ),

h
(1L)
4 = x2x4(C

(3)
0 + 3C

(3)
11 + 2C

(3)
21 ), (B.7)

h
(1L)
5 = x2x4(C

(3)
0 + C

(3)
11 + 2C

(3)
12 + 2C

(3)
23 ),

h
(1L)
6 = x2x4(C

(3)
12 + 2C

(3)
23 ),

h
(1L)
7 = x2x4(C

(3)
12 + 2C

(3)
22 ),

h
(1L)
8 = h

(1L)
9 = h

(1L)
10 = 0

and

h
(2L)
1 = x2x4(−m2

g̃C
(4)
0 − 2C

(4)
24 + εC

(4)
24 )

+x2x4p
2
1(C

(4)
11 + C

(4)
21 ) + 2x2x4p1ṗ2(C

(4)
12 + C

(4)
23 )

+x2x4p
2
2(C

(4)
12 + C

(4)
22 ),

h
(2L)
2 = 2x2x3m

2
g̃C

(4)
11 ,

h
(2L)
3 = 2x2x3m

2
g̃C

(4)
12 ,

h
(2L)
4 = −2x2x4(C

(4)
11 + C

(4)
21 ), (B.8)

h
(2L)
5 = −2x2x4(C

(4)
12 + C

(4)
23 ),

h
(2L)
6 = −2x2x4(C

(4)
11 + C

(4)
23 ),

h
(2L)
7 = −2x2x4(C

(4)
12 + C

(4)
22 ),

h
(2L)
8 = h

(2L)
9 = x2x3m

2
g̃C

(4)
0 ,

h
(2L)
10 = x2x4(C

(4)
11 − C

(4)
12 ).

h
(1R)
i and h

(2R)
i can be obtained by exchanging x1 ↔ x2

and x3 ↔ x4 in h
(1L)
i and h

(2L)
i (i = 1, 2, · · · , 10).

The counterterms are given by:

Λ
(CT)
µ = −CF

gs

2 T a
ijγµ

[
(δZL + δZ†

L)PL

+(δZR + δZ†
R)PR

]
.

(B.9)

The wave-function renormalization constants can be ob-
tained from (3.3.12) and (3.3.13).

C. Box corrections

Finally, we list the four form factors F ti
µν as given in (3.5.1)

in terms of Passarino–Veltman functions. First we define
F tiL

k and F tiR
k by:

F
(ti)
µν = iĝ2

s

16π2 PR[γµγνF
(tiR)
1 + γνγµF

(tiR)
2

+p1νγµF
(tiR)
3 + p2νγµF

(tiR)
4

+p1µγνF
(tiR)
5 + p2µγνF

(tiR)
6

+γµγν/k1F
(tiR)
7 + γνγµ/k1F

(tiR)
8

+/k1p1µp2νF
(tiR)
9 + /k1p2µp1νF

(tiR)
10

+γµ/k1p1νF
(tiR)
11 + γµ/k1p2νF

(tiR)
12

+γν/k1p1µF
(tiR)
13 + γν/k1p2µF

(tiR)
14

+p1µp2νF
(tiR)
15 + p1µp1νF

(tiR)
16

+p2µp1νF
(tiR)
17 + /k1p1µp1νF

(tiR)
18

+/k1p2µp2νF
(tiR)
19 + p2µp2νF

(tiR)
20 ]

+(PR → PL, F
(tiR)
k → F

(tiL)
k ),

(k = 1–20, i = 1–4).

(C.1)

In the following we only give the expressions for F tiR
k

(k = 1, 2, · · · , 20 and i = 1–4). The expressions for F tiL
k

can be obtained from F tiR
k by exchanging x1 ↔ x2 and
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x3 ↔ x4. Furthermore, the form factors in the u-channel
are given by

F
(ui)
µν (k1, k2, p1, p2) = F

(ti)
νµ (k2, k1, p1, p2). (C.2)

The expressions of F
(t1R)
k (k = 1–20) are as given below:

F
(t1R)
1 = F

(t1R)
2

= −2x1x4mg̃D
(1)
27 + 2x2x4mtD

(1)
311

+2(x1x3 − x2x4)mtD
(1)
313,

(C.3)

F
(t1R)
3 = 4x1x3(D

(1)
311 − D

(1)
312),

F
(t1R)
4 = −4x1x3(D

(1)
27 + D

(1)
312),

F
(t1R)
5 = 4x1x3(D

(1)
27 + D

(1)
311 − D

(1)
313),

F
(t1R)
6 = −4x1x3D

(1)
313,

F
(t1R)
7 = F

(t1R)
8 = 2x1x3(D

(1)
313 − D

(1)
312),

F
(t1R)
9 = 4x1x3(D

(1)
13 − D

(1)
12 − D

(1)
22 − D

(1)
23 − D

(1)
24

+D
(1)
25 + 2D

(1)
26 − D

(1)
36 + D

(1)
38 − D

(1)
39 + D

(1)
310),

F
(t1R)
10 = 4x1x3(D

(1)
37 − D

(1)
39 + D

(1)
38 − D

(1)
310),

F
(t1R)
11 = F

(t1R)
12 = F

(t1R)
13 = F

(t1R)
14 = 0,

F
(t1R)
15 = 4x1x3mt(D

(1)
13 − D

(1)
23 + D

(1)
25

+D
(1)
26 − D

(1)
39 + D

(1)
310)

−4x1x4mg̃(D
(1)
0 + D

(1)
11 + D

(1)
12

−D
(1)
13 + D

(1)
24 − D

(1)
26 )

+4x2x4mt(D
(1)
11 − D

(1)
13 + D

(1)
21

+D
(1)
23 + D

(1)
24 − 2D

(1)
25

−D
(1)
26 + D

(1)
34 + D

(1)
39 − 2D

(1)
310),

F
(t1R)
16 = 4x1x3mt(−D

(1)
25 + D

(1)
26 − D

(1)
35

+D
(1)
37 − D

(1)
39 + D

(1)
310)

+4x1x4mg̃(D
(1)
11 − D

(1)
12 + D

(1)
21

−D
(1)
24 − D

(1)
25 + D

(1)
26 )

−4x2x4mt(D
(1)
21 − D

(1)
24 − D

(1)
25 + D

(1)
26 + D

(1)
31

−D
(1)
34 − 2D

(1)
35 + D

(1)
37 − D

(1)
39 + 2D

(1)
310),

F
(t1R)
17 = 4x1x3mt(D

(1)
37 − D

(1)
39 ) − 4x1x4mg̃(D

(1)
25 − D

(1)
26 )

+4x2x4mt(D
(1)
35 − D

(1)
37 + D

(1)
39 − D

(1)
310),

F
(t1R)
18 = 4x1x3(−D

(1)
22 + D

(1)
24 − D

(1)
25 + D

(1)
26 + D

(1)
34

−D
(1)
35 − D

(1)
36 + D

(1)
37 + D

(1)
38 − D

(1)
39 ),

F
(t1R)
19 = 4x1x3(−D

(1)
23 + D

(1)
26 − D

(1)
39 + D

(1)
38 ),

F
(t1R)
20 = 4x1x3mt(−D

(1)
23 − D

(1)
39 )

+4x1x4mg̃(D
(1)
13 + D

(1)
26 )

+4x2x4mt(D
(1)
23 − D

(1)
25 + D

(1)
39 − D

(1)
310),

where we denote D
(1)
i , D

(1)
ij , D

(1)
ijk = Di, Dij , Dijk[−p1,

k1, k2, mg̃, mt̃1
, mt̃1

, mt̃1
].

The expressions for F
(t2R)
k (k = 1–20) are as follows:

F
(t2R)
1 = 2x1x3mt(D

(2)
27 + D

(2)
313) + 2x1x4mg̃D

(2)
27

−2x2x4mt(D
(2)
27 + D

(2)
311),

(C.4)

F
(t2R)
2 = 2x1x3mtD

(2)
313 + 2x1x4mg̃D

(2)
27 − 2x2x4mtD

(2)
311,

F
(t2R)
3 = 4x1x3(−D

(2)
27 − D

(2)
311 + D

(2)
312),

F
(t2R)
4 = 4x1x3(D

(2)
312 − D

(2)
313),

F
(t2R)
5 = 8x1x3(D

(2)
27 + D

(2)
311) + 2x1x3m

2
g̃(D

(2)
0 + D

(2)
11 )

+2x1x3m
2
t (−D

(2)
11 − D

(2)
13 − 2D

(2)
21 − D

(2)
23

−D
(2)
25 − D

(2)
31 − D

(2)
37 )

+2(x2x3 + x1x4)mg̃mt(D
(2)
0 + D

(2)
11 )

−2x2x4m
2
t (D

(2)
11 − D

(2)
13 + D

(2)
21 − D

(2)
25 )

+4x1x3k1 · p1(D
(2)
12 + 2D

(2)
24 + D

(2)
34 )

+4x1x3k1 · p2(D
(2)
13 + D

(2)
25 + D

(2)
26 + D

(2)
310)

−4x1x3p1 · p2(D
(2)
13 + 2D

(2)
25 + D

(2)
35 ),

F
(t2R)
6 = 2x1x3m

2
g̃D

(2)
13

−2x1x3m
2
t (D

(2)
23 + D

(2)
25 + D

(2)
33 + D

(2)
35 )

+2(x2x3 + x1x4)mg̃mtD
(2)
13

+2x2x4m
2
t (D

(2)
23 − D

(2)
25 )

+4x1x3k1 · p1(D
(2)
26 + D

(2)
310)

+4x1x3k1 · p2(D
(2)
23 + D

(2)
39 )

−4x1x3p1 · p2(D
(2)
23 + D

(2)
37 )

+8x1x3D
(2)
313,

F
(t2R)
7 = 2x1x3(D

(2)
27 + D

(2)
312),

F
(t2R)
8 = 2x1x3D

(2)
312,

F
(t2R)
9 = 4x1x3(D

(2)
12 − D

(2)
13 + D

(2)
22 + D

(2)
24 − D

(2)
25

−D
(2)
26 + D

(2)
36 − D

(2)
310),

F
(t2R)
10 = 4x1x3(D

(2)
38 − D

(2)
310),

F
(t2R)
11 = F

(t2R)
12 = 0,

F
(t2R)
13 = 2x1x3mt(−D

(2)
12 + D

(2)
13 − D

(2)
24 + D

(2)
25 )

+2x1x4mg̃(D
(2)
0 + D

(2)
11 )

−2x2x4mt(D
(2)
11 − D

(2)
12 + D

(2)
21 − D

(2)
24 ),

F
(t2R)
14 = 2x1x3mt(D

(2)
23 − D

(2)
26 )

+2x1x4mg̃D
(2)
13

−2x2x4mt(D
(2)
25 − D

(2)
26 ),
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F
(t2R)
15 = 4x1x3mt(D

(2)
12 − D

(2)
13 − D

(2)
23 + D

(2)
24 − D

(2)
25

+D
(2)
26 − D

(2)
37 + D

(2)
310)

+4x1x4mg̃(D
(2)
12 − D

(2)
13 + D

(2)
24 − D

(2)
25 )

−4x2x4mt(D
(2)
12 − D

(2)
13 + 2D

(2)
24

−2D
(2)
25 + D

(2)
34 − D

(2)
35 ),

F
(t2R)
16 = 4x1x3mt(D

(2)
12 − D

(2)
13 + D

(2)
24 − 2D

(2)
25

+D
(2)
26 − D

(2)
35 + D

(2)
310)

+4x1x4mg̃(−D
(2)
0 − 2D

(2)
11

+D
(2)
12 − D

(2)
21 + D

(2)
24 )

+4x2x4mt(D
(2)
11 − D

(2)
12 + 2D

(2)
21

−2D
(2)
24 + D

(2)
31 − D

(2)
34 ),

F
(t2R)
17 = 4x1x3mt(−D

(2)
23 + D

(2)
26 − D

(2)
37 + D

(2)
39 )

+4x1x4mg̃(−D
(2)
13 − D

(2)
25 + D

(2)
26 )

+4x2x4mt(D
(2)
25 − D

(2)
26 + D

(2)
35 − D

(2)
310),

F
(t2R)
18 = 4x1x3(D

(2)
22 − D

(2)
24 − D

(2)
34 + D

(2)
36 ),

F
(t2R)
19 = 4x1x3(−D

(2)
23 + D

(2)
26 + D

(2)
38 − D

(2)
39 ),

F
(t2R)
20 = 4x1x3mt(−D

(2)
23 + D

(2)
26 − D

(2)
33 + D

(2)
39 )

+4x1x4mg̃(−D
(2)
23 + D

(2)
26 )

+4x2x4mt(D
(2)
23 − D

(2)
26 + D

(2)
37 − D

(2)
310),

where D
(2)
i , D

(2)
ij , D

(2)
ijk = Di, Dij , Dijk[−p1, k1,−p2, mg̃,

mt̃1
, mt̃1

, mg̃].

The expressions for F
(t3R)
k (k = 1–20) are written as:

F
(t3R)
1 = 2x1x3mt(D

(3)
27 + 2D

(3)
313)

+x1x3mtm
2
g̃(D

(3)
0 + D

(3)
13 )

−x1x3m
3
t (D

(3)
0 + 2D

(3)
11 − D

(3)
13 + D

(3)
21

+2D
(3)
33 + 2D

(3)
35 − 2D

(3)
37 )

+2x1x4mg̃D
(3)
27 + x1x4m

3
g̃D

(3)
0

−x1x4m
2
t mg̃(D

(3)
0 + 2D

(3)
11 − 2D

(3)
13

+D
(3)
21 + 2D

(3)
23 − 2D

(3)
25 )

+2x2x4mt(D
(3)
27 + 2D

(3)
311 − 2D

(3)
313)

+x2x4mtm
2
g̃(D

(3)
11 − D

(3)
13 )

−x2x4m
3
t (D

(3)
11 − D

(3)
13 + 2D

(3)
21 + 2D

(3)
23 − 4D

(3)
25

+D
(3)
31 − 2D

(3)
33 − 3D

(3)
35 + 4D

(3)
37 )

+2x1x3mtk1 · p1(D
(3)
12 − D

(3)
13 − D

(3)
23 + D

(3)
24

+D
(3)
33 − D

(3)
37 − D

(3)
39 + D

(3)
310)

+2x1x4mg̃k1 · p1(D
(3)
11 + D

(3)
12 − 2D

(3)
13

+D
(3)
23 + D

(3)
24 − D

(3)
25 − D

(3)
26 )

+2x2x4mtk1 · p1(D
(3)
11 − D

(3)
13 + D

(3)
21 + 2D

(3)
23

+D
(3)
24 − 3D

(3)
25 − D

(3)
26 − D

(3)
33 + D

(3)
34 − D

(3)
35

+2D
(3)
37 + D

(3)
39 − 2D

(3)
310)

+2x1x3mtk1 · p2(−D
(3)
13 − D

(3)
26 + D

(3)
33 − D

(3)
39 )

+2x1x4mg̃k1 · p2(−D
(3)
13 + D

(3)
23 − D

(3)
26 )

+2x2x4mtk1 · p2(D
(3)
23 − D

(3)
25 − D

(3)
33 + D

(3)
37

+D
(3)
39 − D

(3)
310)

+2x1x3mtp1 · p2(D
(3)
13 + D

(3)
25 − D

(3)
33 + D

(3)
37 )

+2x1x4mg̃p1 · p2(D
(3)
13 − D

(3)
23 + D

(3)
25 )

+2x2x4mtp1 · p2(−D
(3)
23 + D

(3)
25 + D

(3)
33

+D
(3)
35 − D

(3)
37 ),

(C.5)

F
(t3R)
2 = −2x1x4mg̃D

(3)
27 − 2x1x3mtD

(3)
313

−2x2x4mt(D
(3)
27 + D

(3)
311 − D

(3)
313),

F
(t3R)
3 = 4x1x3(D

(3)
27 + 2D

(3)
311 + D

(3)
312 − 3D

(3)
313)

+2x1x3m
2
g̃(−D

(3)
0 + D

(3)
11 − D

(3)
13 )

+2x1x3m
2
t (D

(3)
13 − D

(3)
21 + 2D

(3)
25 − D

(3)
31

+2D
(3)
33 + 3D

(3)
35 − 4D

(3)
37 )

−2x2x3mtmg̃D
(3)
0 − 2x1x4mtmg̃D

(3)
0

−2x2x4m
2
t (D

(3)
0 + D

(3)
11 )

+4x1x3k1 · p1(D
(3)
23 + D

(3)
24 − D

(3)
25 − D

(3)
26

−D
(3)
33 + D

(3)
34 − D

(3)
35 + 2D

(3)
37 + D

(3)
39 − 2D

(3)
310)

+4x1x3k1 · p2(−D
(3)
25 + D

(3)
26 − D

(3)
33

+D
(3)
37 + D

(3)
39 − D

(3)
310)

+4x1x3p1 · p2(D
(3)
33 + D

(3)
35 − 2D

(3)
37 ),
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F
(t3R)
4 = 4x1x3D

(3)
312 − 2x1x3m

2
g̃D

(3)
0

+2x1x3m
2
t (D

(3)
11 + D

(3)
21 + 2D

(3)
23 − 2D

(3)
25 )

−2x2x3mtmg̃D
(3)
0 − 2x1x4mtmg̃D

(3)
0

−2x2x4m
2
t (D

(3)
0 + D

(3)
11 )

+4x1x3k1 · p1(−D
(3)
23 + D

(3)
25 )

+4x1x3k1 · p2(−D
(3)
23 + D

(3)
26 )

+4x1x3p1 · p2(D
(3)
23 − D

(3)
25 ),

F
(t3R)
5 = 4x1x3(−D

(3)
311 + D

(3)
313) + 2x1x3m

2
g̃D

(3)
0

−2x1x3m
2
t (D

(3)
13 + D

(3)
25 )

+2x2x3mtmg̃(D
(3)
0 + D

(3)
11 − D

(3)
13 )

+2x1x4mtmg̃(D
(3)
0 + D

(3)
11 − D

(3)
13 )

+2x2x4m
2
t (D

(3)
0 + 2D

(3)
11 − D

(3)
13 + D

(3)
21 − D

(3)
25 )

+4x1x3k1 · p2(D
(3)
25 − D

(3)
26 ),

F
(t3R)
6 = −8x1x3D

(3)
313 − 2x1x3m

2
g̃D

(3)
13

+2x1x3m
2
t (D

(3)
25 + 2D

(3)
33 + D

(3)
35 − 2D

(3)
37 )

−2x2x3mtmg̃D
(3)
13

−2x1x4mtmg̃D
(3)
13 − 2x2x4m

2
t (D

(3)
13 + D

(3)
25 )

+4x1x3k1 · p1(D
(3)
23 − D

(3)
25 − D

(3)
33

+D
(3)
37 + D

(3)
39 − D

(3)
310)

+4x1x3k1 · p2(−D
(3)
33 + D

(3)
39 )

+4x1x3p1 · p2(D
(3)
33 − D

(3)
37 ),

F
(t3R)
7 = −4x1x3(D

(3)
312 − D

(3)
313)

+x1x3m
2
g̃(D

(3)
0 − D

(3)
12 + D

(3)
13 )

+x1x3m
2
t (−D

(3)
11 + D

(3)
12 − D

(3)
13 − D

(3)
21

+2D
(3)
24 − 2D

(3)
26 − 2D

(3)
33 + D

(3)
34 − D

(3)
35

+2D
(3)
37 + 2D

(3)
39 − 2D

(3)
310)

+(x2x3 + x1x4)mtmg̃D
(3)
0

+x2x4m
2
t (D

(3)
0 + D

(3)
11 )

+2x1x3k1 · p1(−D
(3)
22 − D

(3)
23

+2D
(3)
26 + D

(3)
33 − D

(3)
36

−D
(3)
37 + D

(3)
38 − 2D

(3)
39 + 2D

(3)
310)

+2x1x3k1 · p2(D
(3)
33 + D

(3)
38 − 2D

(3)
39 )

+2x1x3p1 · p2(D
(3)
25 − D

(3)
26

−D
(3)
33 + D

(3)
37 + D

(3)
39 − D

(3)
310),

F
(t3R)
8 = 2x1x3(D

(3)
27 + D

(3)
312 − D

(3)
313),

F
(t3R)
9 = 4x1x3(D

(3)
22 + D

(3)
23 − D

(3)
25 − D

(3)
26

+D
(3)
36 − D

(3)
38 + D

(3)
39 − D

(3)
310),

F
(t3R)
10 = 4x1x3(D

(3)
25 − D

(3)
26 − D

(3)
37

−D
(3)
38 + D

(3)
39 + D

(3)
310),

F
(t3R)
11 = 2x1x3mt(−D

(3)
25 + D

(3)
26 )

+2x1x4mg̃(−D
(3)
11 + D

(3)
12 )

+2x2x4mt(−D
(3)
11 + D

(3)
12 − D

(3)
21

+D
(3)
24 + D

(3)
25 − D

(3)
26 ),

F
(t3R)
12 = 2x1x3mt(D

(3)
13 + D

(3)
26 ) + 2x1x4mg̃D

(3)
12

+2x2x4mt(D
(3)
12 − D

(3)
13 + D

(3)
24 − D

(3)
26 ),

F
(t3R)
13 = 2x1x3mt(D

(3)
12 − D

(3)
13 + D

(3)
24 − D

(3)
26 )

+2x1x4mg̃(D
(3)
11 − D

(3)
13 )

+2x2x4mt(D
(3)
11 − D

(3)
12

+D
(3)
21 − D

(3)
24 − D

(3)
25 + D

(3)
26 ),

F
(t3R)
14 = −2x1x3mt(D

(3)
13 + D

(3)
26 )

−2x1x4mg̃D
(3)
13

+2x2x4mt(−D
(3)
25 + D

(3)
26 ),

F
(t3R)
15 = −4x1x3mt(D

(3)
12 − D

(3)
23 + D

(3)
24

+D
(3)
25 − D

(3)
39 + D

(3)
310)

+4x1x4mg̃(−D
(3)
11 − D

(3)
12

+D
(3)
13 − D

(3)
24 + D

(3)
26 )

+4x2x4mt(−D
(3)
11 + D

(3)
13

−D
(3)
21 − D

(3)
23

−D
(3)
24 + 2D

(3)
25 + D

(3)
26

−D
(3)
34 − D

(3)
39 + 2D

(3)
310),

F
(t3R)
16 = −4x1x3mt(D

(3)
12 − D

(3)
13 + D

(3)
24

−D
(3)
25 − D

(3)
35 + D

(3)
37 − D

(3)
39 + D

(3)
310)

+4x1x4mg̃(−D
(3)
12 + D

(3)
13 + D

(3)
21

−D
(3)
24 − D

(3)
25 + D

(3)
26 )

+4x2x4mt(D
(3)
21 − D

(3)
24 − D

(3)
25 + D

(3)
26

+D
(3)
31 − D

(3)
34 − 2D

(3)
35

+D
(3)
37 − D

(3)
39 + 2D

(3)
310),

F
(t3R)
17 = 4x1x3mt(D

(3)
13 + D

(3)
26 − D

(3)
37 + D

(3)
39 )

+4x1x4mg̃(D
(3)
13 − D

(3)
25 + D

(3)
26 )

+4x2x4mt(−D
(3)
35 + D

(3)
37 − D

(3)
39 + D

(3)
310),

F
(t3R)
18 = 4x1x3(D

(3)
22 − D

(3)
24 + D

(3)
25 − D

(3)
26

−D
(3)
34 + D

(3)
35 + D

(3)
36

−D
(3)
37 − D

(3)
38 + D

(3)
39 ),

F
(t3R)
19 = 4x1x3(D

(3)
23 − D

(3)
26

−D
(3)
38 + D

(3)
39 ),

F
(t3R)
20 = 4x1x3mt(D

(3)
13 + D

(3)
23 + D

(3)
26 + D

(3)
39 )

+4x1x4mg̃(D
(3)
13 + D

(3)
26 )

+4x2x4mt(−D
(3)
23 + D

(3)
25 − D

(3)
39 + D

(3)
310),

where D
(3)
i , D

(3)
ij , D

(3)
ijk = Di, Dij , Dijk[−p1, k1, k2, mt̃1

,

mg̃, mg̃, mg̃].
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The F
(t4R)
k (k = 1–20) are written explicitly as:

F
(t4R)
1 = F

(t4R)
2

= 1
2 ((x1x3mt(C11 − C12)

+x2x4mtC12 − x2x3mg̃C0)
[−p1, p1 + p2, mg̃, mt̃1

, mt̃1
]),

(C.6)

F
(t4R)
i = 0, (i = 3, 4, · · · 20).
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